已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2.(I)求椭圆的方程;(II)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点。试判断的大小是否为定值,并说明理由.
(本小题满分12分) 若函数的图象与直线相切,相邻切点之间的距离为。(Ⅰ)求和的值;(Ⅱ)若点是图象的对称中心,且,求点的坐标。
(13分)一个同心圆形花坛,分为两部分,中间小圆部分种植绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.⑴ 如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法?⑵ 如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?
(12分) 已知数列(n为正整数)是首项是a1,公比为q的等比数列.(1)求和: , (2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
(13分) 已知的展开式中前三项的系数成等差数列.(1)求n的值;(2)求展开式中系数最大的项.
(12分) 由0,1,2,3,4,5这六个数字。(1)能组成多少个无重复数字的四位数?(2)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25个整除的四位数?(4)组成无重复数字的四位数中比4032大的数有多少个?