已知是中心在坐标原点的椭圆的一个焦点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设:、为椭圆上不同的点,直线的斜率为;是满足()的点,且直线的斜率为.①求的值;②若的坐标为,求实数的取值范围.
已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3.(1)求椭圆C的方程:(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
已知数列满足:,且。(1)求通项公式;(2)求数列的前n项的和
在直三棱柱中,AA1="AB=BC=3,AC=2," D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求平面A1DB与平面DBB1夹角的余弦值.
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.(1)求甲获得这次比赛胜利的概率;(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
已知函数(1)求函数的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若,求的最大值.