如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.
如图,在平面直角坐标系中,顶点为(11, )的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,8).(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.
如图,等边三角形OAB的边长为2,将线段OB绕着点O逆时针旋转60°得到线段OC,连结BC。(1)试判定四边形OABC的形状;(2)求点O到BC的距离;(3)以O为圆心,r为半径作⊙O,根据⊙O与四边形OABC四条边交点的总个数,求相应r的取值范围。
如图,点O在ÐAPB的平分在线,圆O与PA相切于点C; (1) 求证:直线PB与圆O相切; (2) PO的延长线与圆O交于点E。若圆O的半径为3,PC=4。 求弦CE的长。
某商场将进价为30元的洗发水先标价40元出售,为了搞促销活动经过两次降价调至每件32.4元。(1)若这两次降价的降价率相同,求这个降价率;(2)经过调查,该洗发水每降价0.2元,每月可多销售10件,若该洗发水原来每月可销售200件,那么销售价定为多少元,可以使商场在销售该洗发水中获得最大的利润?并求这个最大值。
小明为研究反比例函数的图象,在-2、-1、1中任意取一个数为横坐标,在-2、-1、2中任意取一个数为纵坐标组成点P的坐标。(1)求出点P坐标所有可能结果的个数。(用列表或画树状图求解)(2)求点P在反比例函数的图象上的概率。