如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到B′A′时所扫过的扇形的面积.
某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
(1)设该商店购进甲型平板电脑 x 台,请写出全部售出后该商店获利 y 与 x 之间函数表达式.
(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是 ;(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形 ABCD 中, AD / / BC , AC ⊥ BD ,过点 D 作 BD 垂线交 BC 的延长线于点 E ,且 ∠ DBC = 45 ° ,证明:四边形 ABCD 是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 ABCD 内接于 ⊙ O 中, ∠ BCD = 60 ° .求 ⊙ O 的半径.
如图,某数学兴趣小组为测量一棵古树的高度,在距离古树 A 点处测得古树顶端 D 的仰角为 30 ° ,然后向古树底端 C 步行20米到达点 B 处,测得古树顶端 D 的仰角为 45 ° ,且点 A 、 B 、 C 在同一直线上,求古树 CD 的高度.(已知: 2 ≈ 1 . 414 , 3 ≈ 1 . 732 ,结果保留整数)
为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是" A .书画类、 B .文艺类、 C .社会实践类、 D .体育类".现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:
(1)本次被抽查的学生共有 名,扇形统计图中" A .书画类"所占扇形的圆心角的度数为 度;
(2)请你将条形统计图补全;
(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择" C .社会实践类"的学生共有多少名?
(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.
先化简,再求值: ( 1 x - 1 - 1 x + 1 ) ÷ x + 2 x 2 - 1 ,然后从 - 1 ,0,1中选择适当的数代入求值.