如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.(1)求此抛物线的解析式.(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为: (1)用x的代数式表示t为:t=;当0<x≤4时, y2与x的函数关系为y2=;当≤x<时,y2=100; (2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围; (3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
如图,直线分别与两坐标轴交于A,B两点,点C从A点出发沿射线BA方向移动,速度为每秒1个单位长度.以C为顶点作等边△CDE,其中点D和点E都在x轴上.半径为的⊙M与x轴、直线AB相切于点G、F. (1)直线AB与x轴所夹的角∠ABO= °; (2)求当点C移动多少秒时,等边△CDE的边CE与⊙M相切?
如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线; (2)若CB=2,CE=4,①求圆的半径;②求DE、DF的长.
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?
如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点. (1)求直线BC的解析式和点C的坐标; (2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是 .