如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,S22=4S1S3.
(本题10分)已知如图:点(1,3)在函数(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数(x>0)的图象又经过A、E两点,点E的横坐标为m. (1)求k的值; (2)求点A的坐标;(用含m代数式表示) (3)当∠ABD=45°时,求m的值.
(本题10分)某超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价(售价不能超过进价的160%)应定为多少?这时应进货多少个?
(本题10分)阅读材料:分解因式: 解: = = = = =, 此种方法抓住了二次项和一次项的特点,然后加一项,使三项成为完全平方式,我们把这种分解因式的方法叫配方法. (1)用上述方法分解因式:; (2)无论取何值,代数式总有一个最小值,请尝试用配方法求出当取何值时代数式的值最小,并求出这个最小值.
(本题10分)在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF. (1)求证:△ADE≌△CBF; (2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.
(本题8分)已知,实数,,在数轴上的位置如图所示,化简:.