已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.
已知函数. (1)解不等式; (2)若对于,有.求证:.
在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为. (1)求圆C的直角坐标方程; (2)设圆C与直线将于点、,若点的坐标为,求的值.
如图,圆与圆内切于点,其半径分别为3与2,圆的弦交圆于点(不在上),是圆的一条直径. (1)求的值; (2)若,求到弦的距离.
已知存在实数和使得. (1)若,求的值; (2)当时,若存在实数使得对任意恒成立,求的最值.