如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.
电动自行车已成为市民日常出行的首选工具.据某市品牌电动 自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆. (1)求该品牌电动车销售量的月平均增长率; (2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?
已知关于的方程. (1)若这个方程有实数根,求的取值范围; (2)若这个方程有一个根为1,求的值.
解下列方程.(每小题4分,共16分) (1) (2) (3)(配方法) (4)(公式法)
如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动. (1)求线段所在直线的函数解析式; (2)设抛物线顶点的横坐标为. ①用的代数式表示点的坐标; ②当为何值时,线段最短; (3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请直接写出点的坐标;若不存在,请说明理由.
请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: ⑴用树状图表示出所有可能的寻宝情况; ⑵求在寻宝游戏中胜出的概率.