如图,▱ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有 对全等三角形;(2)请写出其中一对全等三角形: ≌ ,并加以证明.
如图,在□ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.(1)求证:AD=CE;(2)判断直线BC与⊙O的位置关系,并说明理由;(3)若BC=3,DE=6,求BE的长.
甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)甲车的速度是 ,m= ;(2)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;(3)当乙车行驶多少时间时,甲乙两车的距离是280千米.
如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B 测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)
如图,一次函数的图象与反比例函数的图象相交于点A(2,3)和点B,与轴相交于点C(8,0) .(1)求这两个函数的解析式;(2)当取何值时,.
端午节吃粽子是中华民族的传统习惯.小祥的妈妈从超市买了一些粽子回家,用不透明袋子装着这些粽子(粽子除内部馅料不同外,其他一切相同),小祥问买了什么样的粽子,妈妈说:“其中香肠馅粽子两个,剩余的都是绿豆馅粽子,若你从中任意拿出一个是香肠馅粽子的概率为”.(1)袋子中绿豆馅粽子有 个;(2)小祥第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树状图或列表法,求小祥两次拿到的都是绿豆馅粽子的概率.