已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为.(Ⅰ)求椭圆的方程;(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线与交于点,直线与交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.
(本小题满分12分)函数f(x)对任意的实数m,n,有f(m+n)=f(m)+f(n),当x>0时,有f(x)>0。①求证:②求证:f(x)在(-∞,+∞)上为增函数.③若f(1)=1,解不等式f(4x-2x)<2.
(本小题满分12分)在a>0时,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对x∈R恒成立,若p∧q为假,p∨q为真,求a的取值范围.
(本小题满分12分)已知函数f(x)=1+(-2<x≤2).(1)用分段的形式表示该函数;(2)画出函数的图象.(3)写出函数的值域、单调区间.
(本小题满分10分)已知全集U=R,集合A="{x|" log2(3-x)≤2},集合B={x|}(1)求A,B (2)求()∩B
(本小题满分14分)已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)若恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系.