已知直角梯形中,是边长为2的等边三角形,.沿将折起,使至处,且;然后再将沿折起,使至处,且面面,和在面的同侧.(Ⅰ) 求证:平面;(Ⅱ) 求平面与平面所构成的锐二面角的余弦值.
(本小题满分12分) 已知点是圆上任意一点,点与点关于原点对称.线段的中垂线分别与交于两点. (1)求点的轨迹的方程; (2)斜率为1的直线与曲线交于两点,若(为坐标原点),求直线的方程.
(本小题满分12分) 如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,,E是SA的中点. (1)求证:平面BED平面SAB; (2)求直线SA与平面BED所成角的大小.
(本小题满分14分)已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的单调区间与极值.
(本小题满分14分)已知圆过点, 且在轴上截得的弦的长为. (1) 求圆的圆心的轨迹方程; (2) 若, 求圆的方程.
(本小题满分14分)设数列的前项和为,点均在函数的图像上. (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.