设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.(Ⅰ)求椭圆的方程; (Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
(本小题满分15分) 若函数在时取得极值,且当时,恒成立.(1)求实数的值;(2)求实数的取值范围.
(本小题满分14分)已知椭圆,其左准线为,右准线为,抛物线以坐标原点为顶点,为准线,交于两点.(1)求抛物线的标准方程;(2)求线段的长度.
(本小题满分14分)命题:函数在上是增函数;命题:,使得 .(1)若命题“且”为真,求实数的取值范围;(2)若命题“或”为真,“且”为假,求实数的取值范围.
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC。设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-E的余弦值.
如图,四棱锥的侧面垂直于底面,,,在棱上,是的中点,二面角为求的值;