甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行到有一方比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(Ⅰ)求的值;(Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.
设函数(1)求的单调增区间;(2)时,函数有三个互不相同的零点,求实数的取值范围.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下图所示,
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
设函数.(1)求的最小正周期;(2)若函数的图像向右、向上分别平移个单位长度得到的图像,求在的最大值.
在△中,角、、的对边分别为、、,且.(1)求;(2)若,且=,求和的值.
某电视台在一次对文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关数据如下表所示:
(1)用分层抽样方法在收看新闻节目的观众中,随机抽取9名,那么40岁以上的观众应抽取几名?(2)由表中数据分析,我们能否有99%的把握认为收看新闻节目的观众与年龄有关?(最后结果保留3位有效数字,四舍五入)附: