已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.(Ⅰ)求椭圆C的方程和离心率e;(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
(本小题共14分) 已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
(直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).(1)求曲线的离心率;(2)求在k=0,0<b<1的条件下,S的最大值;(3)当|AB|=2,S=1时,求直线AB的方程.
如图,已知抛物线的方程为,过点M(0,m)且倾斜角为的直线交抛物线于A(x1,y1),B(x2,y2)两点,且(1)求m的值(2)(文)若点M分所成的比为,求直线AB的方程(理)若点M分所成的比为,求关于的函数关系式。
已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C:(p>0)的顶点关于直线l的对称点在该抛物线上.(Ⅰ)求抛物线C的方程;(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,A、B异于原点),试求点N的轨迹方程.
已知A,B是抛物线上的两个动点,为坐标原点,非零向量满足.(Ⅰ)求证:直线经过一定点;(Ⅱ)当的中点到直线的距离的最小值为时,求的值.