设 P 1 , P 2 , … , P n 为平面 α 内的 n 个点,在平面 α 内的所有点中,若点 P 到点 P 1 , P 2 , … , P n 的距离之和最小,则称点 P 为 P 1 , P 2 , … , P n 的一个"中位点",例如,线段 A B 上的任意点都是端点 A , B 的中位点,现有下列命题:
①若三个点 A 、 B 、 C 共线, C 在线段 A B 上,则 C 是 A , B , C 的中位点;
②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点 A 、 B 、 C 、 D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是(写出所有真命题的序号).
直线:与直线:平行,则______
给出下列命题:①直线的倾斜角是;②已知过抛物线的焦点的直线与抛物线交于,两点,则有;③已知、为双曲线:的左、右焦点,点为双曲线右支上异于顶点的任意一点,则的内心始终在一条直线上.其中所有正确命题的序号为 .
已知等差数列的公差,为其前项的和.若,则数列的前和取得最小值时,的值为 .
已知直线与圆心为的圆相交于、两点,且为等边三角形,则实数 .
已知是椭圆的两个焦点,为椭圆上任意一点,且.若的面积为,则 .