如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系,并求S的最大值?(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
解不等式组: 2 x + 5 > 5 x + 2 ① 3 x - 1 < 4 x② .
计算: 4 + ( - 1 ) 0 + | π - 2 | - 3 tan 30 ° .
已知在 ΔABC 中, O 为 BC 边的中点,连接 AO ,将 ΔAOC 绕点 O 顺时针方向旋转(旋转角为钝角),得到 ΔEOF ,连接 AE , CF .
(1)如图1,当 ∠ BAC = 90 ° 且 AB = AC 时,则 AE 与 CF 满足的数量关系是 ;
(2)如图2,当 ∠ BAC = 90 ° 且 AB ≠ AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图3,延长 AO 到点 D ,使 OD = OA ,连接 DE ,当 AO = CF = 5 , BC = 6 时,求 DE 的长.
如图,已知抛物线 y = a x 2 + bx + c 与 x 轴相交于 A ( - 3 , 0 ) , B 两点,与 y 轴相交于点 C ( 0 , 2 ) ,对称轴是直线 x = - 1 ,连接 AC .
(1)求该抛物线的表达式;
(2)若过点 B 的直线 l 与抛物线相交于另一点 D ,当 ∠ ABD = ∠ BAC 时,求直线 l 的表达式;
(3)在(2)的条件下,当点 D 在 x 轴下方时,连接 AD ,此时在 y 轴左侧的抛物线上存在点 P ,使 S ΔBDP = 3 2 S ΔABD .请直接出所有符合条件的点 P 的坐标.
如图, ⊙ O 是 ΔABC 的外接圆, AD 是 ⊙ O 的直径, F 是 AD 延长线上一点,连接 CD , CF ,且 ∠ DCF = ∠ CAD .
(1)求证: CF 是 ⊙ O 的切线;
(2)若 cos B = 3 5 , AD = 2 ,求 FD 的长.