某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共1 000吨生活垃圾,数据统计如下(单位:吨):试估计“厨余垃圾”投放正确的概率.
已知:,求x的值。
计算:
四边形中,∥,,,.点为射线上动点(不与点、重合),点在直线上,且.记,,,. (1)当点在线段上时,写出并证明与的数量关系; (2)随着点的运动,(1)中得到的关于与的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的的取值范围; (3)若cos=,试用的代数式表示.
已知直线与轴交于点,与轴交于点,将三角形绕点顺时针旋转90°,使点落在点,点落在点,抛物线过点、、,其对称轴与直线交于点. (1)求抛物线的表达式; (2)求的正切值; (3)点在轴上,且△与△相似,求点的坐标.
如图,在△中,是边上的一点,是的中点,过作的平行线交的延长线于点,且,连结. (1)求证:; (2)如果,试判断四边形的形状,并证明你的结论。