如图,在平面直角坐标系中,二次函数的图象与 轴交于A(,0),B(2,0),且与轴交于点C.(1)求该抛物线的解析式,并判断△ABC的形状;(2)点P是x轴下方的抛物线上一动点, 连接PO,PC,并把△POC沿CO翻折,得到四边形,求出使四边形为菱形的点P的坐标;(3) 在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在, 求出Q点的坐标;若不存在,说明理由.
如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM•AB;(3)若AM=,sin∠ABD=,求线段BN的长.
如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)
阅读下列材料,并用相关的思想方法解决问题.计算:.令,则原式===问题:(1)计算;(2)解方程.
如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.