在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=. (1) 如图1,当点E在射线OB上时,求关于的函数解析式,并写出自变量的取值范围;(2) 如图2,当点F在⊙O上时,求线段DF的长;(3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
(1)约分:;(2)约分:.
已知:△ABC中,AE平分∠BAC。(1)如图①AD⊥BC于D,若∠C =70°,∠B =30°,则∠DAE= ;(2)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,求∠EFG的度数;(3)在(2)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的角度大小发生改变吗?说明理由.
如图,梯形ABCD是由三个直角三角形拼成的,各直角边的长度如图所示。(1)请你运用两种方法计算梯形ABCD的面积;(2)根据(1)的计算,探索三者之间的关系,并用式子表示出来。
如图,AB∥CD,AE交CD与点C,DEAE,垂足为E,, 求的度数。
如图,AD为△ABC的中线,(1)作△ABD的中线BE;(2)作△BED的BD边上的高EF;(3)若△ABC的面积为60,BD=10,则点E到BC边的距离为多少?