在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=. (1) 如图1,当点E在射线OB上时,求关于的函数解析式,并写出自变量的取值范围;(2) 如图2,当点F在⊙O上时,求线段DF的长;(3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有8000人,请估计爱吃D粽的人数; (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a≠0)经过点A、C. (1)求抛物线的解析式; (2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标; (3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题. 请按照小萍的思路,探究并解答下列问题: (1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形; (2)设AD=x,建立关于x的方程模型,求出x的值.
某超市在销售中发现:某种新年吉祥物品平均每天可售出20套,每套盈利40元。为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售这种吉祥物上盈利1200元,那么每套应降价多少?
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.