如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至,旋转角为.(1)当点恰好落在EF边上时,求旋转角的值;(2)如图2,G为BC的中点,且00<<900,求证:;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,与能否全等?若能,直接写出旋转角的值;若不能,说明理由.
某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据下图,分别求出两班复赛的平均成绩和方差; (2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?
如图,在□ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF. 求证:BE=DF.
如图,△ABC是等边三角形,点D是边BC上(除B、C外)的任意一点,∠ADE="60" º,且DE交△ABC外角∠ACF的平分线CE于点E (1)求证:∠1=∠2; (2)求证:AD=DE;
如图,直线l1的解析式为,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C. (1)求点D的坐标; (2)求直线的解析式; (3)求⊿ADC的面积
如图,在四边形ABCD中,∠B=90º,DE∥AB,DE交BC于 ,交AC于F,DE=BC,∠CDE=∠ACB="30" º. (1)求证:△FCD是等腰三角形 (2)若AB=4,求CD的长。