在平面直角坐标系xOy中,抛物线()与y轴交于点A,其对称轴与x轴交于点B。(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在这一段位于直线l的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。
在等腰 ΔABC 中, AC = BC ,以 BC 为直径的 ⊙ O 分别与 AB , AC 相交于点 D , E ,过点 D 作 DF ⊥ AC ,垂足为点 F .
(1)求证: DF 是 ⊙ O 的切线;
(2)分别延长 CB , FD ,相交于点 G , ∠ A = 60 ° , ⊙ O 的半径为6,求阴影部分的面积.
阅读理解题:
定义:如果一个数的平方等于 − 1 ,记为 i 2 = − 1 ,这个数 i 叫做虚数单位,把形如 a + bi ( a , b 为实数)的数叫做复数,其中 a 叫这个复数的实部, b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算: ( 2 − i ) + ( 5 + 3 i ) = ( 2 + 5 ) + ( − 1 + 3 ) i = 7 + 2 i ;
( 1 + i ) × ( 2 − i ) = 1 × 2 − i + 2 × i − i 2 = 2 + ( − 1 + 2 ) i + 1 = 3 + i ;
根据以上信息,完成下列问题:
(1)填空: i 3 = , i 4 = ;
(2)计算: ( 1 + i ) × ( 3 − 4 i ) ;
(3)计算: i + i 2 + i 3 + … + i 2017 .
位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体 AD 和底座 CD 两部分组成.如图,在 Rt Δ ABC 中, ∠ ABC = 70 . 5 ° ,在 Rt Δ DBC 中, ∠ DBC = 45 ° ,且 CD = 2 . 3 米,求像体 AD 的高度(最后结果精确到0.1米,参考数据: sin 70 . 5 ° ≈ 0 . 943 , cos 70 . 5 ° ≈ 0 . 334 , tan 70 . 5 ° ≈ 2 . 824 )
列方程组解应用题:
某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:
批发价(元 )
零售价(元 )
黑色文化衫
10
25
白色文化衫
8
20
假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?
如图,在平行四边形 ABCD 中,边 AB 的垂直平分线交 AD 于点 E ,交 CB 的延长线于点 F ,连接 AF , BE .
(1)求证: ΔAGE ≅ ΔBGF ;
(2)试判断四边形 AFBE 的形状,并说明理由.