图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)图②中阴影部分的正方形的边长是 _________ ;(2)请用两种不同的方法求图2中阴影部分的面积:方法1: _________ ;方法2: _________ ;(3)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 _________ ;(4)根据(3)中的等量关系解决如下问题:若m﹣n=﹣5,mn=3,则(m+n)2的值为多少?
解不等式组:.
如图,△ABC中,∠ACB=90°,延长AC到D,使得CD=CB,过点D作DE⊥AB于点E,交BC于F.求证:AB=DF.
对于平面直角坐标系xOy中的点P和线段AB,给出如下定义:在线段AB外有一点P,如果在线段AB上存在两点C、D,使得∠CPD=90°,那么就把点P叫做线段AB的悬垂点. (1)已知点A(2,0),O(0,0) ①若,D(1,1),E(1,2),在点C,D,E中,线段AO的悬垂点是______; ②如果点P(m,n)在直线上,且是线段AO的悬垂点,求的取值范围; (2)如下图是帽形M(半圆与一条直径组成,点M是半圆的圆心),且圆M的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.
已知,点P是△ABC边AB上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为边AB的中点. (1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是; (2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明; (3)如图3,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
二次函数的图象经过点A(﹣1,4),B(1,0),经过点B,且与二次函数交于点D.过点D作DC⊥x轴,垂足为点C. (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN的最大值.