求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且到点P(0,4)的距离为1的直线的方程.
(本小题满分14分)在一个半径为1的半球材料中截取三个高度均为h的圆柱,其轴截面如图所示,设三个圆柱体积之和为。(1) 求f(h)的表达式,并写出h的取值范围是 ;(2) 求三个圆柱体积之和V的最大值;
(本小题满分14分)中,角A,B,C的对边分别是且满足(1) 求角B的大小;(2) 若的面积为为,求的值;
(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,已知,M为A1B与AB1的交点,N为棱B1C1的中点(1) 求证:MN∥平面AA1C1C(2) 若AC=AA1,求证:MN⊥平面A1BC
(本小题14分)已知函数 (Ⅰ)若且函数在区间上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;(Ⅲ)求证:,…….
(本小题13分)已知两定点满足条件的点P的轨迹是曲线E,直线与曲线E交于A、B两点。如果且曲线E上存在点C,使.(Ⅰ)求曲线的方程;(Ⅱ)求AB的直线方程;(Ⅲ)求的值.