若圆经过坐标原点和点,且与直线相切, 从圆外一点向该圆引切线,为切点,(Ⅰ)求圆的方程;(Ⅱ)已知点,且, 试判断点是否总在某一定直线上,若是,求出的方程;若不是,请说明理由;(Ⅲ)若(Ⅱ)中直线与轴的交点为,点是直线上两动点,且以为直径的圆过点,圆是否过定点?证明你的结论.
(本题12分)某种家电器每台的销售利润与该电器无故障使用时间T(单位:年)有关,若T≤1,则销售利润为0元,若1<T≤3,则销售利润为100元,若T>3,则销售利润为200元,设每台该种电台无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率为为P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的两个根,且P2=P3,(1)求P1,P2,P3的值;(2)记表示销售两台这种家用电器的销售利润总和,求的分布列;(3)求销售两台这种家用电器的销售利润总和的平均值。
(本题12分)如图,货轮每小时海里的速度向正东方航行,快艇按固定方向匀速直线航行,当货轮位于A1处时,快艇位于货轮的东偏南105°方向的B1处,此时两船相距30海里,当货轮航行30分钟到达A2处时,快艇航行到货轮的东偏南45°方向的B2处,此时两船相距海里。问快艇每小时航行多少海里?
(本小题满分12分)已知曲线C的极坐标方程是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。
(本小题满分12分)已知函数f(x)=|x-8|-|x-4|。(1)在答题卡相应的坐标系上作出y=f(x)的图像。(2)解关于x的不等式f(x)>2。
(本小题满分12分)已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB(2)DE·DC=AE·BD.