已知动圆过定点 A ( 4 , 0 ) , 且在 y 轴上截得的弦 M N 的长为8. (Ⅰ) 求动圆圆心的轨迹 C 的方程; (Ⅱ) 已知点 B ( - 1 , 0 ) , 设不垂直于 x 轴的直线 l 与轨迹 C 交于不同的两点 P , Q , 若 x 轴是 ∠ P B Q 的角平分线, 证明直线 l 过定点.
已知下列三个方程至少有一个方程有实根,求实数的取值范围.
已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
已知函数f(x)=- (a>0,x>0).(1)用函数的单调性定义证明:f(x)在(0,+∞)上是增函数;(2)若f(x)在[,2]上的值域是[,2],求实数a的值.
已知奇函数f(x)在定义域[-2,2]内单调递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.
已知函数(1)(2)