(I)证明当 x ∈ [ 0 , 1 ] 时 , 2 2 x ≤ sin x ≤ x   (II)若不等式 a x + x 2 + x 3 2 + 2 ( x + 2 ) cos x ≤ 4 对 x ∈ [ 0 , 1 ] 恒成立,求实数 a 取值范围.
已知实数满足,求证中至少有一个是负数.
已知若求实数的值.
已知函数f(x)=2asin(2x-)+b的定义域为[0,],函数最大值为1,最小值为-5,求a和b的值.
求函数y=2tan(-2x)的定义域、值域、对称中心、并指出它的周期、奇偶性和单调性.
函数f(x)=2cos2x+2sinx+1,xÎ[-,],求该函数的最大值和最小值以及取得最值的x的值.