(I)证明当 x ∈ [ 0 , 1 ] 时 , 2 2 x ≤ sin x ≤ x   (II)若不等式 a x + x 2 + x 3 2 + 2 ( x + 2 ) cos x ≤ 4 对 x ∈ [ 0 , 1 ] 恒成立,求实数 a 取值范围.
已知动点到两定点、的距离之和为定值.(1)求的轨迹方程;(2)若倾斜角为的直线经过点,且与的轨迹相交于两点、,求弦长.
求函数的单调区间和极值.
设有关于的一元二次方程.(1)若是从四个数中任取的一个数,是从三个数中任取的一个数,求方程有实根的概率.(2)若是从区间任取的一个数,是从区间任取的一个数,其中满足,求方程有实根的概率,并求出其概率的最大值.
一个盒子装有6张卡片,上面分别写着如下6个定义域为R的函数:,, ,,, 现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得函数是奇函数的概率.
某次运动会甲、乙两名射击运动员成绩如下:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;(1)用茎叶图表示甲,乙两个成绩;(2)分别计算两个样本的平均数和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.