如图,抛物线 C 1 : x 2 = 4 y , C 2 : x 2 = - 2 p y ( p > 0 ) 点 M ( x 0 , y 0 ) 在抛物线 C 2 上,过 M 作 C 1 的切线,切点为 A , B ( M 为原点 O 时, A , B 重合于 O ),当 x 0 = 1 - 2 时,切线 M A 的斜率为 - 1 2 .
(I)求 P 的值; (II)当 M 在 C 2 上运动时,求线段 A B 中点 N 的轨迹方程( A , B 重合于 O 时,中点为 O ).
已知数列的前n项和和通项满足,等差数列中,.(1)求数列,的通项公式;(2)数列满足,求证:.
已知函数.(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域.
已知函数的定义域为[2,3],值域为[1,4];设.(1)求a,b的值;(2)若不等式在上恒成立,求实数k的取值范围;(3)若有三个不同的实数解,求实数k的取值范围.
已知,m是是实常数,(1)当m=1时,写出函数的值域;(2)当m=0时,判断函数的奇偶性,并给出证明;(3)若是奇函数,不等式有解,求a的取值范围.
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)(1)分别将A,B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A,B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?