已知抛物线 C 的顶点为原点,其焦点 F 0 , c c > 0 到直线 l : x - y - 2 = 0 的距离为 3 2 2 .设 P 为直线 l 上的点,过点 P 作抛物线 C 的两条切线 P A , P B ,其中 A , B 为切点. (1) 求抛物线 C 的方程; (2) 当点 P x 0 , y 0 为直线 l 上的定点时,求直线 A B 的方程; (3) 当点 P 在直线 l 上移动时,求 A B · B F 的最小值.
(本小题满分15分)已知椭圆C:+=1的离心率为,左焦点为F(-1,0),(1) 设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?
(本小题满分15分)已知函数(Ⅰ)若曲线在点处的切线与直线平行,求的值;(Ⅱ)记,,且.求函数的单调递增区间.
(本小题满分14分)已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且,,求的值.
(本小题满分14分)已知正项数列满足:, (1)求通项;(2)若数列满足,求数列的前项和.
设函数(1)求函数的周期和单调递增区间;(2)设A,B,C为ABC的三个内角,若AB=1, ,,求s1nB的值.