已知抛物线 C 的顶点为原点,其焦点 F 0 , c c > 0 到直线 l : x - y - 2 = 0 的距离为 3 2 2 .设 P 为直线 l 上的点,过点 P 作抛物线 C 的两条切线 P A , P B ,其中 A , B 为切点. (1) 求抛物线 C 的方程; (2) 当点 P x 0 , y 0 为直线 l 上的定点时,求直线 A B 的方程; (3) 当点 P 在直线 l 上移动时,求 A B · B F 的最小值.
一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图,如图 (1)求的值; (2)根据样本数据,试估计盒子中小球重量的平均值; (注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.) (3)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望.
如图,在中,是边的中点,且,. (1)求的值; (2)求的值.
在平面直角坐标系中,直线(为参数)与圆(为参数)相切,切点在第一象限,则实数的值为.
A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、、p2. (1)求学生甲不能通过A高校自主招生考试的概率; (2)设X为学生甲在三道程序中获优的次数,求X的概率分布及数学期望.
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙. (1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望; (2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?