如图,在四棱柱 P - A B C D 中, P D ⊥ 平面 A B C D , A B / / D C , A B ⊥ A D , D C = 3 , B C = 5 , A D = 4 , ∠ P A D = 60 ° .
(1)当正视方向与向量 A D → 的方向相同时,画出四棱锥 P - A B C D 的正视图(要求标出尺寸,并写出演算过程); (2)若 M 为 P A 的中点,求证:求二面角 D M / / 平面 P B C .
(3)求三棱锥 D - P B C 的体积.
如图,菱形ABCD中,,平面ABCD,平面ABCD,(1)求证:平面BDE;(2)求锐二面角的大小.
已知函数.(1)求的最小正周期;(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值,并求出相应的x的值.
已知点动点P满足.(Ⅰ)若点的轨迹为曲线,求此曲线的方程;(Ⅱ)若点在直线:上,直线经过点且与曲线有且只有一个公共点,求的最小值.
如图,长方体中,为线段的中点,.(Ⅰ)证明:⊥平面;(Ⅱ)求点到平面的距离.
已知关于的方程:,R.(Ⅰ)若方程表示圆,求的取值范围;(Ⅱ)若圆与直线:相交于两点,且=,求的值.