设 S , T 是R的两个非空子集,如果存在一个从 S 到 T 的函数 y = f ( x ) ,(i) T = f ( x ) | x ∈ S (ii)对任意 x 1 , x 2 ∈ S ,当 x 1 < x 2 时,恒有 f ( x 1 ) < f ( x 2 ) .那么称这两个集合"保序同构",现给出以下3对集合:
① A = N , B = N *    ② A = x | - 1 ≤ ≤ 3 , B = x | - 8 ≤ x ≤ 10   ③ A = x | 0 ≤ x ≤ 1 , B = R
其中,"保序同构"的集合对的序号是.(写出"保序同构"的集合对的序号).
如图,在中,,,是的中点,若向量(),且点在的内部(不含边界),则的取值范围是 .
若函数在区间上单调递增,则实数的取值范围是 .
已知函数()的最小正周期为,则 ,在内满足 的 .
给出四个命题:①平行于同一平面的两个不重合的平面平行;②平行于同一直线的两个不重合的平面平行;③垂直于同一平面的两个不重合的平面平行;④垂直于同一直线的两个不重合的平面平行;其中真命题的序号是________.
设等差数列的前项和为,若,,则的值是 .