现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.(Ⅰ)求这4个人中恰好有2人去参加甲项目联欢的概率;(Ⅱ)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率;(Ⅲ)用分别表示这4个人中去参加甲、乙项目联欢的人数,记,求随机变量的分布列与数学期望.
设定义在( 0 , + ∞ )上的函数 f x = a x + 1 a x + b a > 0
(Ⅰ)求 f x 的最小值; (Ⅱ)若曲线 y = f x 在点 1 , f 1 处的切线方程为 y = 3 2 x ,求 a , b 的值。
设△ A B C 的内角 A , B , C 所对边的长分别为 a , b , c ,且有 2 sin B cos A = sin A cos C + cos A sin C .
(Ⅰ)求角 A 的大小; (Ⅱ)若 b = 2 , c = 1 , D 为 B C 的中点,求 A D 的长.
若函数 h ( x ) 满足 (1) h ( 0 ) = 1 , h ( 1 ) = 0 ; (2)对任意 a ∈ [ 0 , 1 ] ,有 h ( h ( a ) ) = a ; (3)在(0,1)上单调递减。则称 h ( x ) 为补函数。已知函数 h ( x ) = ( 1 - x p 1 + λ x p ) 1 p ( λ > - 1 , p > 0 ) .
(1)判函数 h ( x ) 是否为补函数,并证明你的结论; (2)若存在 m ∈ [ 0 , 1 ] ,使得 h ( m ) = m ,若 m 是函数 h ( x ) 的中介元,记 p = 1 n ( n ∈ N * ) 时 h ( x ) 的中介元为 x n ,且 S n = ∑ i = 1 n x i ,若对任意的 n ∈ N + ,都有 S n < 1 2 ,求 λ 的取值范围; (3)当 λ = 0 , x ∈ ( 0 , 1 ) 时,函数 y = h ( x ) 的图像总在直线 y = 1 - x 的上方,求P的取值范围。
已知三点 O ( 0 , 0 ) , A ( - 2 , 1 ) , B ( 2 , 1 ) ,曲线 C 上任意一点 M x , y 满足 M A ⇀ + M B ⇀ = O M ⇀ · O A ⇀ + O B ⇀ + 2 . (1)求曲线 C 的方程; (2)动点 Q ( x 0 , y 0 ) ( - 2 < x 0 < 2 ) 在曲线 C 上,曲线 C 在点 Q 处的切线为 1 ,问:是否存在定点 P 0 , t t < 0 ,使得 1 与 P A , P B 都不相交,交点分别为 D , E ,且 △ Q A B 与 △ P D E 的面积之比是常数?若存在,求 t 的值。若不存在,说明理由。
在三棱柱 A B C - A 1 B 1 C 1 中,已知 A B = A C = A A 1 = 5 , B C = 4 ,在 A 1 在底面 A B C 的投影是线段 B C 的中点 O 。
(1)证明在侧棱 A A 1 上存在一点 E ,使得 O E ⊥ 平面 B B 1 C 1 C ,并求出 A E 的长; (2)求平面 A 1 B 1 C 与平面 B B 1 C 1 C 夹角的余弦值。