已知,<θ<π. (1)求tanθ;(2)求的值.
(本小题满分14分)已知函数,, 其中,是自然对数的底数.函数,. (Ⅰ)求的最小值; (Ⅱ)将的全部零点按照从小到大的顺序排成数列,求证: (1),其中; (2).
(本小题满分13分)如图,设为抛物线的焦点,是抛物线上一定点,其 坐为,为线段的垂直平分线上一点,且点到抛物线的准线的距离为. (Ⅰ)求抛物线的方程; (Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.
(本小题满分12分)设数列的前项和为,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和,并求使成立的正整数的最大值.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点. (Ⅰ)求证:平面. (Ⅱ)求二面角的余弦值.
【改编】在中,角的对边分别为,的外接圆半径,且满足, (1)求角和边的大小; (2)若是锐角三角形,求的面积的取值范围。