已知:A、B、C是的内角,分别是其对边长,向量,,.(Ⅰ)求角A的大小;(Ⅱ)若求的长.
如图,在直三棱柱中,分别是的中点,且.(1)求证:平面;(2)求证:平面平面.
平面直角坐标系中,已知向量且.(1)求与之间的关系式;(2)若,求四边形的面积.
已知数列满足=-1,,数列满足(1)求证:数列为等比数列,并求数列的通项公式.(2)求证:当时,(3)设数列的前项和为,求证:当时,.
已知圆C:过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.(1)求切线PF的方程; (2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程.(3)若Q为抛物线E上的一个动点,求的取值范围.
已知函数(Ⅰ)求函数在(1, )的切线方程(Ⅱ)求函数的极值(Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;