如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以 点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点O; (2)直接写出△ABC与△A’B’C’的位似比 ; (3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点 O中心对称的△A"B"C",如果△ABC内部一点M的坐标为(x,y),写出△A"B"C"中M的对应点M"的坐标 。
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.
已知抛物线(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
(1)求y1与x之间的函数关系式;(2)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).①求y2与x之间的函数关系式;②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.
如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长.
如图,直线交x轴于A点,交y轴于B点,抛物线经过点A、B,交x轴于另一点C,顶点为D.(1)求抛物线的函数表达式;(2)求点C、D两点的坐标;(3)求△ABD的面积;
正方形ABCD和正方形DEFG如图①放置,保持正方形ABCD不动,将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<180°)(1)当0°<α<90°时,如图②,连结AE、CG,则AE:CG= ;(2)当90°<α<180°时,如图③,连结AE、CG,(1)中的结论还成立吗?请说明理由;(3)将图③中的正方形ABCD和正方形DEFG分别改为矩形ABCD和矩形DEFG,且使AD=4,CD=6,ED=2,GD=3,如图④,求AE:CG的值.