设函数=x+ax2+blnx,曲线y =过P(1,0),且在P点处的切斜线率为2.(1)求a,b的值;(2)证明:≤2x-2.
已知函数在处取得极小值.(1)求的值;(2)若在处的切线方程为,求证:当时,曲线不可能在直线的下方.
已知等比数列的首项,公比,数列前项的积记为.(1)求使得取得最大值时的值;(2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列.(参考数据)
如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,为的中点. (1)求证:∥平面;(2)设垂直于,且,求点到平面的距离.
已知正方形的边长为2,分别是边的中点.(1)在正方形内部随机取一点,求满足的概率;(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求.
已知函数.(1)求的最小正周期和单调增区间;(2)设,若求的大小.