在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,,,,是的中点.(Ⅰ) 求证://平面;(Ⅱ) 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
已知函数.(1)求(x)的最小正周期和单调递增区间;(2)求f(x)在区间上的最大值和最小值.
(本小题满分10分)选修4-4:极坐标与参数方程选讲已知曲线的极坐标方程是,直线的参数方程是(为参数).(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)设直线与轴的交点是,是曲线上一动点,求的最大值.
(本小题满分10分)选修4-1几何证明选讲已知外接圆劣弧上的点(不与点、重合),延长至,延长交的延长线于.(Ⅰ)求证:;(Ⅱ)求证:.
已知函数(Ⅰ)当时,判断函数的单调区间并给予证明;(Ⅱ)若有两个极值点,证明:.
(本小题满分12分)已知抛物线,直线与抛物线交于两点.(Ⅰ)若轴与以为直径的圆相切,求该圆的方程;(Ⅱ)若直线与轴负半轴相交,求面积的最大值.