某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:
根据上表信息解答以下问题:(1)从该小学任选两名教职工,用表示这两人请假次数之和,记“函数在区间上有且只有一个零点”为事件,求事件发生的概率;(2)从该小学任选两名职工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.
如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形.(Ⅰ)求椭圆C的方程; (Ⅱ)过点任作一动直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.
已知函数(Ⅰ)若,;(Ⅱ)已知为的极值点,且,若当时,函数的图象上任意一点的切线斜率恒小于,求的取值范围.
近年来,全球气候变化无常,给人们的生产与生活该来诸多不便.为研究气候的变化趋势,给我们的生产与生活提供有力的数据支持,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如表所示:(Ⅰ)若第六、七、八组的频数、、为递减的等差数列,且第一组与第八组的频数相同,求出、、、的值;(Ⅱ)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为,,求事件“”的概率.
如图,在直三棱柱中,,,分别为,的中点,四边形是边长为的正方形.(Ⅰ)求证:∥平面; (Ⅱ)求证:平面平面.
已知数列为等差数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)证明: