如图,三棱柱的所有棱长都为,且平面,为中点.(Ⅰ)求证:面;(Ⅱ)求二面角的大小的余弦值;(Ⅲ)求点到平面的距离.
如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900(1)求证:PC⊥BC(2)求点A到平面PBC的距离
在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形两条对角线的长(2)设实数t满足()·=0,求t的值
已知集合 S n = { X | X = ( x 1 , x 2 , … , x n ) , x i ∈ { 0 , 1 } , i = 1 , 2 , … , n } ( n ≥ 2 ) ,对于 A = ( a 1 , a 2 , … , a n ) , B = ( b 1 , b 2 , … , b n ) ∈ S n ,定义 A 与 B 的差为 A - B = ( | a 1 - b 1 | , | a 2 - b 2 | , … , | a n - b n | ) ; A 与 B 之间的距离为 d ( A , B ) = ∑ i - 1 a 1 - b 1 ,
(Ⅰ)当 n = 5 时,设 A = ( 0 , 1 , 0 , 0 , 1 ) , B = ( 1 , 1 , 1 , 0 , 0 ) ,求 A - B , d ( A , B ) ;
(Ⅱ)证明: A , B , C ∈ S n ,有 A - B ∈ S n ,且 d ( A - C , B - C ) = d ( A , B ) ;
(Ⅲ)证明: A , B , C ∈ S n , d ( A , B ) , d ( A , C ) , d ( B , C ) 三个数中至少有一个是偶数.
已知椭圆 C 的左、右焦点坐标分别是 ( - 2 , 0 ) , ( 2 , 0 ) ,离心率是 6 3 ,直线 y = t 与椭圆 C 交与不同的两点 M , N ,以线段为直径作圆 P ,圆心为 P .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)若圆 P 与 x 轴相切,求圆心 P 的坐标; (Ⅲ)设 Q ( x , y ) 是圆 P 上的动点,当 t 变化时,求 y 的最大值.
设定函数 f ( x ) = a 3 x 3 + b x 2 + c x + d ( a > 0 ) ,且方程 f ` ( x ) - 9 x = 0 的两个根分别为1,4。 (Ⅰ)当 a = 3 且曲线 y = f ( x ) 过原点时,求 f ( x ) 的解析式; (Ⅱ)若 f ( x ) 在 ( - ∞ , + ∞ ) 无极值点,求 a 的取值范围。