几何体EFG —ABCD的面ABCD,ADGE,DCFG均为矩形,AD=DC=l,AE=。(I)求证:EF⊥平面GDB;(Ⅱ)线段DG上是否存在点M使直线BM与平面BEF所成的角为45°,若存在求等¥ 的值;若不存在,说明理由.
已知椭圆:的右焦点,点在椭圆上. (Ⅰ)求椭圆的标准方程; (Ⅱ)直线过点,且与椭圆交于,两点,过原点作直线的垂线,垂足为,如果△ 的面积为(为实数),求的值.
(本小题满分15分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且. (Ⅰ)求证:平面平面; (Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在, 说明理由.
(本小题满分15分)设等差数列的前项和为,且,。 (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为,且(其中是非零的实数),若,,成等差数列,问,, 能成等比数列吗?说明理由; (Ⅲ)设数列的通项公式,是否存在正整数、(),使得,, 成等比数列?若存在,求出所有、的值;若不存在,说明理由.
(本小题满分15分)设函数,直线与函数图象相邻两交点的距离为. (Ⅰ)求的值; (Ⅱ)在中,角所对的边分别是,若点是函数图像的一个对称中 心,且,求面积的最大值.
(本题满分14分 )已知函数() (Ⅰ)求函数的单调区间; (Ⅱ)当时,求在上的最大值和最小值(); (Ⅲ)求证:.