甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.(I)求随机变量的分布列及其数学期望E();(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值元的概率分布列.
已知为的三个内角,其所对的边分别为,且.(1)求角的值;(2)若,求的面积.
等差数列中,(1)求的通项公式;(2)设
已知函数.(1)当时,求的最小值;(2)若函数在区间上为单调函数,求实数的取值范围;(3)当时,不等式恒成立,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当 时,求实数取值范围.