设函数.(1)若函数图像上的点到直线距离的最小值为,求的值;(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;(3)对于函数定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.
已知正数a, b, c满足a+b2c.求证:.
(本小题共12分) 记关于的不等式的解集为,不等式的解集为.(I)若,求;(II)若,求正数的取值范围.
已知Sn是数列的前n项和,且(Ⅰ)求数列的通项公式;(Ⅱ)设,是否存在最大的正整数k,使得对于任意的正整数n,有恒成立?若存在,求出k的值;若不存在,说明理由.
.已知方向向量为的直线l过椭圆的焦点以及点(0,),直线l与椭圆C交于 A 、B两点,且A、B两点与另一焦点围成的三角形周长为.(1)求椭圆C的方程;(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点, (O坐标原点),求直线m的方程.
已知函数.(1)求函数的最小正周期及单调递增区间;(2)需要把函数的图像经过怎样的变换才能得到函数的图像?(3)在中,、、分别为三边、、所对的角,若,,求的最大值.