如图所示,已知A点的坐标为(0,3),⊙A的半径为1,点B在轴上.①若点B的坐标为(4,0),⊙B的半径为3,试判断⊙A与⊙B的位置关系;②能否在轴的正半轴上确定一点B,使⊙B与y轴相切,并且与⊙A相切?请说明理由.
(本题12分)结论:在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°. 如图1,在等边三角形ABC内有一点P,且PA=2, PB=, PC=1.求∠BPC度数的大小和等边三角形ABC的边长. 李明同学做了如图2所示的辅助线:将△BPC绕点B逆时针旋转60°,画出旋转后的图形,连接PP′,从而问题得到解决.你能说说其中的理由吗? 请你参考李明同学的思路,解决下列问题: 如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
(本题12分)如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m–4)2+n2–8n=–16,过C点作∠ECF分别交线段AB、OB于E、F两点. (1)求A点的坐标. (2)若OF+BE=AB,求证:CF=CE. (3)如图(2),若∠ECF=45°,给出两个结论:OF+AE–EF的值不变;OF+AE+EF的值不变.其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.
(本题10分)如图,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足,直线OQ与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
(本题10分) 某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天? (2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
(本题10分)阅读材料:小明在学习实数后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+),善于思考的小明进行了以下探索: 设a+b=(m+n)(其中a、b、m、n均为正整数), 则有a+b=m2+2n2+2mn,∴a= m2+2n2,b=2mn. 这样小明就找到了一种把部分a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b=(m+n),用含m、n的式子分别表示a、b,得:a=, b= ; (2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+ ); (3)若a+4=(m+n),且a、m、n均为正整数,求a的值.