椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.(1)求椭圆C以及圆O的方程; (2)当点在椭圆C上运动时,判断直线与圆O的位置关系.
已知的三个顶点,,,其外接圆为圆. (1)求圆的方程; (2)若直线过点,且被圆截得的弦长为2,求直线的方程; (3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.
【改编】如图,已知面,,; (1)在线段上找一点M,使面。 (2)求由面与面所成角的二面角的正切值。
已知圆. (Ⅰ)写出圆C的标准方程,并指出圆心坐标和半径大小; (Ⅱ)是否存在斜率为的直线m,使m被圆C截得的弦为AB,且(为坐标原点).若存在,求出直线m的方程; 若不存在,说明理由.
如图,四棱锥的底面为矩形,,,分别是的中点,. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.
已知正方形的中点为直线和的交点,正方形一边所在直线的方程为,求其他三边所在直线的方程.