如图1,△ABC内接于半径为4cm的⊙O,AB为直径,长为.(1)计算∠ABC的度数;(2)将与△ABC全等的△FED如图2摆放,使两个三角形的对应边DF与AC有一部分重叠,△FED的最长边EF恰好经过的中点M.求证:AF=AB;(3)设图2中以A、C、M为顶点的三角形面积为S,求出S的值.
为解方程x4-5x2+4=0,我们可以将x2视为一个整体,然后设x2=y,则 x4=y2, 原方程化为y2-5y+4=0.① 解得y1=1,y2=4 当y=1时,x2=1.∴x=±1 当y=4时,x2=4,∴x=±2。 ∴原方程的解为x1=1,x2=-1,x3=2,x4=-2 解答问题: (1)填空:在由原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想. (2)解方程:(x2-2x)2+x2-2x-6=0.
如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1). ①画出“基本图形”关于原点O对称的四边形A1B1C1D1,并填出A1,B1,C1,D1的坐标. A1(,) B1(,) C1(,) D1(,) ②画出“基本图形”绕B点顺时针旋转900所成的四边形A2B2C2D2。
用适当的方法解下列方程: (1) (2)
如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB方向以1cm/S的速度运动,另一动点Q从A出发沿着AC方向以2cm/S的速度运动,P,Q两点同时出发,运动时间为t(s). (1)当t为几秒时,△PCQ的面积是△ABC面积的 ? (2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.
如图,在平行四边形中,为的中点,连接并延长交的延长线于点. (1)求证:; (2)当与满足什么数量关系时,四边形是矩形,请说明理由.