如图,在直角坐标系xoy中,点A是反比例函数y1=的图象上一点,AB⊥x轴的正半轴于点B,C是OB的中点,一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AO D=4.(1)求反比例函数和一次函数的表达式;(2)观察图象,请指出在y轴的右侧,当y1>y2时x的取值范围.
如图,在菱形ABCD中,对角线AC与BD相交于点O.CE∥BD,DE∥AC,连接OE. 求证:OE=AD.
用配方法解一元二次方程.请结合题意填空,完成本题的解答. 解:方程变形为,.......................第一步 配方,得........................................第二步 移项,得...........................................第三步 两边开平方,得....................................第四步 即或.................................第五步 所以,...................................第六步 (1)上述解法错在第 步; (2)请你用配方法求出该方程的解.
解方程:.
如图是1710的正方形网格,四边形ABCD的四个顶点都在网格的顶点上,我们把这样的四边形称作格点四边形.请在网格中画出一个与四边形ABCD相似但不全等的格点四边形EFGH.
如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3). (1)求抛物线的函数表达式; (2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标; (3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.