在平面直角坐标系xOy中,抛物线经过原点O, 点B(-2,n)在这条抛物线上. (1)求抛物线的解析式; (2)将直线沿y轴向下平移b个单位后得到直线l, 若直线l经过B点,求n、b的值; (3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.
已知:直线过抛物线的顶点P,如图所示. (1)顶点P的坐标是 ; (2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式; (3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线的交点坐标.
如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q. (1)求该二次函数的解析式; (2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC; (3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时, ①求t的值; ②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.
(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE; (2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点. ①若CD=2PC时,求证:BP⊥CF; ②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.
为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?
如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC关于y轴对称的△A1B1C1; (2)画出△ABC关于原点O对称的△A2B2C2; (3)点C1的坐标是 ;点C2的坐标是 ;过C、C1、C2三点的圆的圆弧的长是 (保留π).