某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数). (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;(2)当日产量为多少时,可获得最大利润?
如图,在三棱锥中,底面ABC,点、分别在棱上,且 http://wx.jtyjy.com/ (Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成角的大小的余弦值;(Ⅲ)是否存在点,使得二面角为直二面角?并说明理由.
A处一缉私艇发现在北偏东45°方向,距离12 n mile的海面C处有一走私船正以10 n mile/h的速度沿东偏南15°方向逃窜.缉私艇的速度为14 n mile/h,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.
已知函数(其中)(I)求函数的值域; (II)若对任意的,函数,的图象与直线有且仅有两个不同的交点,试确定的值(不必证明),并求函数的单调增区间
数列上,(1)求数列的通项公式; (2)若
已知函数.(1)求函数的最小值;(2)若≥0对任意的恒成立,求实数的值;(3)在(2)的条件下,证明: