某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数). (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;(2)当日产量为多少时,可获得最大利润?
已知有两个不相等的实根,无实根.若同时保证:为真,为假,求实数的取值范围。
已知函数,. (Ⅰ)求的最大值; (Ⅱ)若,求的值.
已知,当为何值时,平行时它们是同向还是反向?
如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为. (1)写出关于的函数关系式,指出这个函数的定义域. (2)当AE为何值时,绿地面积最大?
已知函数是常数且在区间[—,0]上有,试求a、b的值。