已知反比例函数图象过第二象限内的点A(-2,m)AB⊥x轴于B, Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,—),(1)反比例函数的解析式为 ,m= ,n= ;(2)求直线y=ax+b的解析式;(3)在y轴上是否存在一点P,使△PAO为等腰三角形,若存在,请直接写出P点坐标,若不存在,说明理由。
已知与互为相反数,求代数式的值。
(1)解方程:(2)计算:
在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.
如图、是半径为1的的两条切线,点、分别为切点,∠APB=60°,OP与弦AB交于点C,与交于点D. (1)在不添加任何辅助线的情况下,写出图中所有的全等三角形; (2)求阴影部分的面积(结果保留).
如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A、B(A在B的右边)。 (1)求抛物线的解析式; (2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由; (3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。