已知点,的坐标分别是,.直线,相交于点,且它们的斜率之积为.(1)求点的轨迹的方程;(2)若过点的两直线和与轨迹都只有一个交点,且,求的值;(3)在轴上是否存在两个定点,,使得点到点的距离与到点的距离的比恒为,若存在,求出定点,;若不存在,请说明理由.
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了并流入杯中,会溢出杯子吗?请用你的计算数据说明理由。(冰、水的体积差异忽略不计)
已知集合,对于数列中.(Ⅰ)若三项数列满足,则这样的数列有多少个?(Ⅱ)若各项非零数列和新数列满足首项,(),且末项,记数列的前项和为,求的最大值.
已知椭圆:()过点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.
已知函数(为自然对数的底数).(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)若存在使不等式成立,求实数的取值范围.
如图,已知平面,四边形是矩形,,,点,分别是,的中点.(Ⅰ)求三棱锥的体积; (Ⅱ)求证:平面;(Ⅲ)若点为线段中点,求证:∥平面.