已知函数,数列是公差为d的等差数列,是公比为q()的等比数列.若(Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有,求 的值;(Ⅲ)试比较与的大小.
设数列的首项为1,前n项和为Sn,且(). (1)求数列的通项公式; (2)设,是数列的前n项和,求.
设的内角,,所对的边长分别为,,且,. (1)若,求的值; (2)若的面积为3,求的值.
已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4. (1)求椭圆C的方程; (2)已知直线与椭圆C交于A, B两点,若点M(,0),求证为定值.
数列记 (1)求b1、b2、b3、b4的值; (2)求数列的通项公式及数列的前n项和
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点. (1)求证:BM∥平面PAD; (2)在侧面PAD内找一点N,使MN平面PBD; (3)求直线PC与平面PBD所成角的正弦.